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We analytically study the excitation of surface Josephson plasma waves �SJPWs� propagating across the
junctions in layered superconductors in the presence of external dc magnetic field. Both the attenuated total
reflection and the modulation of the superconducting parameters methods of the SJPWs excitation are consid-
ered. We show that the reflection of the incident electromagnetic wave can be substantially decreased due to the
resonance excitation of SJPWs, for certain angles and frequencies of the incident wave when changing the
magnetic field. Moreover, we find physical conditions guaranteeing the total suppression of the specular
reflectivity. The analytical results are supported by the numerical simulations.
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I. INTRODUCTION

The physical properties of layered superconductors have
attracted a great interest from many research groups. The
strongly anisotropic high-Tc single crystals are characteristic
members of this family. The artificial stacks of Josephson
junctions, e.g., Nb-Al-AlOx-Nb, represent another group of
such materials. Experiments for the c-axis conductivity in
layered superconductors justify the use of a model, in which
the superconducting CuO2 layers are coupled by the intrinsic
Josephson effect through the layers.1–5 Thus, a very unusual
plasma �the so-called Josephson plasma� is formed in layered
superconductors. The current capability in this plasma is
strongly anisotropic. Even the physical nature of the currents
along and across the layers is principally different. Actually,
the current along the layers is similar to the current in bulk
superconductors, whereas the current across the layers has a
Josephson origin.

The Josephson current flowing along the c axis couples
with the electromagnetic field inside insulating dielectric lay-
ers, causing a specific kind of elementary excitations called
the Josephson plasma waves �JPW�.6–8 So, the layered super-
conducting structure favors propagation of electromagnetic
waves through the layers.

Being of the similar origin as common plasma waves,
JPWs propagate with frequencies above some threshold
value �the Josephson plasma frequency �J�. The great chal-
lenge is to excite the electromagnetic waves in layered su-
perconductors in a controllable manner because of their tera-
hertz �THz� frequency range,9,10 which is still hardly
reachable for both electronic and optical devices. Only re-
cently the experimental evidence of excitation and emission
of THz Josephson plasma waves has been reported.11

The presence of the sample boundary can produce a new
branch of the wave spectrum below the Josephson plasma
frequency, ���J,

12 i.e., surface Josephson plasma waves
�SJPWs�, which are analogous to the surface-plasmon polari-
tons in metals.13,14 Such waves can propagate in the vicinity
of the superconducting surface along the layers. Later, the
existence of surface electromagnetic waves propagating
across the superconducting layers was predicted.15 In the lat-

ter case, the spectrum of the surface waves is very sensitive
to the external magnetic field. The profile of the amplitude
oscillations of the electric-field component of such waves is
peculiar: initially it increases toward the center of the super-
conductor and after reaching a crossover point decreases ex-
ponentially.

The dispersion curve, ��q�, of the surface waves lies be-
low the “vacuum light line,” �=cq, where q is the wave
number and c is the speed of light. This means that the sur-
face waves have wave vectors greater than the wave vectors
of light of the same frequency in the vacuum. Thus, to excite
the surface waves by means of incident electromagnetic
waves it is necessary to use specific methods14 such as the
attenuated total reflection �ATR� method or the modulation
of the superconducting parameters �PM� method.

By means of the ATR method, one can excite a surface
Josephson plasma wave by a wave incident from a dielectric
prism onto a superconductor separated from the prism by a
thin vacuum gap. In the absence of the superconductor, the
incident wave completely reflects from the bottom of the
prism if the incident angle � exceeds the threshold angle �t
for total internal reflection. However, the evanescent wave
penetrates under the prism at a distance of about a vacuum
wavelength. The wave vector of the evanescent mode is ori-
ented along the bottom surface of the prism and its value is
higher than � /c. This feature is the same as for surface
waves. So, it is natural to expect the spatial matching and
temporal matching �coincidence of both, the frequencies and
wave vectors� of the evanescent modes and surface Joseph-
son plasma waves for a certain incident angle. When the
resonant excitation of SJPWs by the incident wave occurs,
there is a strong suppression of the reflected wave.

The modulation of superconductor parameters can also
result in the resonance excitation of SJPWs. The periodically
modulated layered superconductor being irradiated by the
electromagnetic wave with the tangential component q of the
wave vector, results in the excitation of diffracted waves �ho-
mogeneous and nonhomogeneous� with the wave vectors
qn=q+ng, where g is the period of the reciprocal grating and
n is an integer. An SJPW would be excited if the tangential
component of a wave vector of the nth diffracted wave co-
incides with the SJPW’s wave vector, �qn�=�sw. Such a
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matching can be reached by a proper choice of the frequency
� and/or the incident angle �. Under the resonance condi-
tions, the amplitude of nonhomogeneous wave, which is re-
sponsible for the SJPW excitation, significantly grows and
can exceed the amplitude of the incident wave. On the other
hand, the SJPW excitation affects the amplitudes of other
diffracted waves what leads to the strong suppression of the
specularly reflected wave. Thus, changing � and/or �, one
can control the absorption and reflection of the electromag-
netic wave. These phenomena are potentially useful for de-
tecting THz radiation. The resonance phenomena described
above are similar to the Wood anomalies in optics.

The problem of the SJPWs excitation along the layers by
means of both the ATR and PM methods has been recently
discussed.12 In the present work, we theoretically study the
excitation of surface waves in layered superconductors
across the layers. The ATR as well as PM methods of exci-
tation of SJPWs are considered. One of the most important
results is the prediction of the ability to control the Wood
anomalies by means of an external magnetic field. In other
words, the Wood anomalies can be observed for a certain
incident angle � and for a certain frequency � of the incident
wave when changing the magnetic field.

II. MODEL

Consider an interface �the xy plane� separating the
vacuum �z�0� from a layered superconductor �z�0� �see
Fig. 1�. We study linear surface transverse magnetic �TM�
electromagnetic waves propagating along the x axis with the
electric, E= �Ex ,0 ,Ez�, and magnetic, H= �0,H ,0�, compo-
nents. The x axis coincides with the crystallographic c axis.
Thus, the electromagnetic wave propagates across the super-
conducting layers.

The electromagnetic field inside the layered supercon-
ductor is determined by the distribution of the gauge-
invariant phase difference ��x ,z , t� of the order parameter
between neighboring layers. It is described by a set of
coupled sine-Gordon equations,16 which in the continuum
limit �see, e.g., Ref. 17� can be written as

�1 − 	ab
2 �2

�x2�� �2�

�t2 + �r
��

�t
+ �J

2 sin �	 − 	c
2�J

2�2�

�z2 = 0.

�1�

Here �r=4
�c /� is the relaxation frequency proportional to
the quasiparticle conductivity �c across the layers, 	ab and

	c=c /�J

� are the magnetic penetration depths across and

along layers, respectively, and �J= �8
eDjc /
��1/2 is the Jo-
sephson plasma frequency. The latter is determined by the
critical Josephson current density jc, the interlayer dielectric
constant �, and the spatial period of the layered structure D.

As was shown in Ref. 18, the intralayer quasiparticle con-
ductivity, �ab, should also be taken into account if � is far
enough from the Josephson plasma frequency. The contribu-
tion of the in-plane conductivity to the dissipation can be
easily incorporated in our analysis. However, for the fre-
quency range considered here �close to �J�, this contribution
is strongly suppressed and can be safely omitted because the
relative value of the term with �ab is

�	ab

	c
�2��ab

�c
��1 −

�

�J
� � 1.

The electric and magnetic fields, Es and Hs, in the layered
superconductor can be obtained from the distribution of the
gauge-invariant phase difference using relations

Ex
s = H0

1

�J

�

��

�t
, Ez

s =
	ab

2

c

�2Hs

�t � x
, �2�

−
�Hs

�z
=

H0

	c
� 1

�J
2

�2�

�t2 +
�r

�J
2

��

�t
+ sin �	 , �3�

−
��

�z
=

2
D

�0
�1 − 	ab

2 �2

�x2�Hs, �4�

where H0=�0 /2
D	c, �0=
c
 /e is the flux quantum.
Note that the component Ex of the electric field induces a

charge in the superconducting layers when the charge com-
pressibility is finite. This results in an additional interlayer
coupling �the so-called capacitive coupling�.19 Such a cou-
pling significantly affects the properties of the longitudinal
Josephson plasma waves with the wave vector perpendicular
to the layers. The dispersion equation for the linear Joseph-
son plasma waves with arbitrary direction of wave vector,
and taking into account capacitive coupling, was obtained in
Ref. 20. According to this dispersion equation, the capacitive
coupling can be safely neglected in our case, when the wave
vector has a component ks�� /c along the layers, since �
=�RD

2 /sD�1. Here RD is the Debye length for a charge in a
superconductor and s is the thickness of the superconducting
layers. Below we consider the excitation of the electromag-
netic field in a layered superconductor using the ATR and
PM methods.

A. Basic equations for the ATR method

Here we study the excitation of the monochromatic
SJPWs with field components proportional to
exp�i�qx−�t�
 and decaying into both the vacuum and
layered superconductor away from the interface z=0. When
q�� /c, the Maxwell equations yield an exponential decay
of the wave amplitude into the vacuum

Hvac,Ex
vac,Ez

vac � exp�iqx − i�t − kvz�, z � 0, �5�

with the decay constant

FIG. 1. �Color online� Geometry for studying surface waves
across the layers.
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kv =
q2 −
�2

c2 � 0.

Moreover, the Maxwell equations provide the ratio of ampli-
tudes for the tangential electric and magnetic fields at the
interface z=+0 �i.e., right above the sample surface�

Ex
vac

Hvac =
ic

�
kv =

ic

�

q2 −

�2

c2 . �6�

The linearized version of the coupled sine-Gordon Eq. �1�,
together with Eqs. �2�–�4�, have a solution of the form

�,Hs,Ex
s � exp�iqx − i�t + ksz� , �7�

Ex
s = − H0

i�


�
� , �8�

Hs = −
H0

	cks
�1 − �2 − i���� , �9�

inside a layered superconductor and give the relation be-
tween the decay constant ks �Re�ks��0
, wave number q,
and dimensionless frequency �=� /�J

�1 + 	ab
2 q2��1 − �2 − i��� = 	c

2ks
2, �10�

where �=�r /�J is the dissipation parameter.
The dispersion relation, q���, for the surface Josephson

plasma wave can be obtained by matching the in-plane fields
H and Ex at the vacuum-superconductor interface. Thus, in
order to find the spectrum of the surface JPWs, we should
derive the ratio Ex

s /Hs at z=0 and use the impedance
matching

Ex
vac

Hvac =
Ex

s

Hs . �11�

Thus, substituting Eqs. �6�, �8�, and �9� into Eq. �11� we
obtain the dispersion relation for the surface Josephson
plasma waves15


Q2 −
	ab

2 �2

	c
2�

=
	ab

2 �2
1 + Q2

	c�
1 − �2 − i��
, �12�

with Q=q	ab. The dispersion curve for such waves is shown
in Fig. 2�b�.

One can excite an SJPW with the spectrum �Eq. �12�
 by
a wave incident from a dielectric prism onto a supercon-
ductor separated from the prism by a thin vacuum gap of
thickness � �see Fig. 3�. The prism has permittivity �. The
wave frequency � is assumed to be below the Josephson
plasma frequency �J. The magnetic field Hd in the dielectric
prism can be represented as a sum of incident and reflected
waves with amplitudes Hi and Hr, respectively,

Hd = Hi exp�iqx − ikd�z − ��
 + Hr exp�iqx + ikd�z − ��
,

z � � . �13�

Here and below we omit the time-dependent multiplier,
exp�−i�t�. The plane z=0 corresponds to the vacuum-

superconductor boundary. The tangential q and normal kd
components of the wave vector for waves in the prism are
defined by

q = k
� sin �, kd = 
k2� − q2 = k
� cos � , �14�

where k=� /c. The condition for total internal reflection of
the wave in the dielectric prism is assumed to be fulfilled,
i.e.,

sin2 � � 1/� . �15�

The magnetic field

FIG. 2. The dispersion curves for the SJPWs across the layers.
�a� The case of the SJPWs in the presence of the external magnetic
field, h0 /hc=0.357. The branches correspond to n=0,1 ,2 , . . . ,9
from bottom to top. The spectrum is limited from below by the
value �� �1−2h0

2 /hc
2�1/2�0.86. The values of the parameters are:

	c /	ab=7, �=4. The solid circle on the line n=0 describes the
SJPW simulated in Figs. 10 and 11. �b� The dispersion curve �Eq.
�12�
 for the SJPWs in the absence of the external magnetic field,
h0=0; 	c /	ab=100, �=16.

FIG. 3. �Color online� A dielectric prism is separated from a
layered superconductor by a vacuum gap of thickness �. An elec-
tromagnetic wave with incident angle ���t can excite SJPWs that
satisfy the following resonance condition: �
� sin � /c=q. Here ki

and kr are the wave vectors of the incident and reflected waves
associated with the magnetic-field amplitudes Hi and Hr. The reso-
nance excitation of SJPWs by the incident wave produces a strong
suppression of the reflected wave. This method for producing sur-
face waves is known as the ATR method.
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Hvac = Hi�h+ exp�iqx + kvz� + h− exp�iqx − kvz�
 , �16�

of the evanescent mode in the vacuum gap is generated by
the wave from the dielectric prism. Here h+�h−� are the di-
mensionless amplitudes of the evanescent waves that expo-
nentially increase �decrease� with the spatial increment rate

kv = 
q2 − k2 = k
� sin2 � − 1. �17�

Using Maxwell’s equations, one can express the x compo-
nents, Ex

d and Ex
vac, of the electric field in the dielectric prism

and in the vacuum gap via the magnetic-field amplitudes

Ex
d =

kd

k�
Hi�hr exp�iqx + ikd�z − ��
 − exp�iqx − ikd�z − ��
� ,

hr = Hr/Hi, �18�

Ex
vac = − i

kv

k
Hi�h+ exp�iqx + kvz� − h− exp�iqx − kvz�
 .

�19�

B. Basic equations for the PM method

Surface Josephson plasma waves can be also excited by
diffracting the electromagnetic wave incident onto the peri-
odically modulated layered superconductor in the presence
of the external magnetic field. The spectrum for such waves
is described in Ref. 15.

Consider a semi-infinite layered superconductor in the ge-
ometry shown in Fig. 4. The crystallographic ab plane coin-
cides with the zy plane and the c axis is directed along the x
axis.

We suppose that the London penetration depth along the x
direction of the layered superconductor, 	ab=	D / �sd�1/2, is
periodically modulated in the x direction with a spatial pe-
riod L. Here 	 is the penetration depth for the bulk super-
conductor and s�D is the thickness of a superconducting
layer. Such a modulation can be realized, for instance, if we

produce different thicknesses s of superconducting layers.
The Fourier expansion of 	ab

2 �x� is

	ab
2 �x� = 	ab

2 �1 + �
n=−�

�

fn exp�ingx�	 , �20�

where f−n= fn
�, f0=0, and g=2
 /L is the period of the recip-

rocal grating.
Let an external magnetic field h0 be applied along the y

axis, parallel to the superconducting layers �see Fig. 4�. We
consider h0 to be less than the critical value hc=�0 /
D	c,
when the dc phase �0�z� inside the superconductor coincides
with the phase distribution in a “tail” of a Josephson vortex
placed at a distance z0 away from the boundary of the super-
conductor �see, e.g., Ref. 15�

�0�z� = 4 arctan�exp� z − z0

	c
�	, z � 0, �21�

z0 = 	c arccosh� hc

h0
� . �22�

Let a p-polarized �transverse magnetic� plane monochro-
matic electromagnetic wave with the electric, E= �Ex ,0 ,Ez�,
and magnetic, H= �0,H ,0�, fields be incident onto the peri-
odically modulated layered superconductor at an angle �
from the vacuum half-space. The in-plane and out-of-plane
components of its wave vector are

kx � q = k sin �, kz = k cos � .

The in-plane periodic modulation results in generating the
diffracted waves with in-plane and out-of-plane wave-vector
components

qn = q + ng, kzn
V = 
k2 − qn

2, Re�kzn
V 
, Im�kzn

V 
 � 0,

where n is an integer and g=2
 /L. The magnetic field of the
incident wave in the vacuum �z�0� is given by the Fourier-
Floquet expansion

HV�x,z� = Hinc�exp�iqx − ikzz� + �
n

Rn exp�iqnx + ikzn
V z�	 ,

�23�

where Hinc is the amplitude of the incident wave and Rn are
the transformation coefficients �TCs�. Recall that the time
dependence exp�−i�t� is omitted in all formulas. Using the
Maxwell equations, we express the tangential component of
the electric field in the vacuum in terms of the amplitudes of
the magnetic field

Ex
V�x,z� = Hinc�− �V exp�iqx − ikzz�

+ �
n

�n
VRn exp�iqnx + ikzn

V z�	 , �24�

where �V=cos �, �n
V=kzn

V /k.
The electromagnetic field inside the layered supercon-

ductor �z�0� is determined by the distribution of the gauge-
invariant phase difference ��x ,z , t�. We consider the t and x
dependence of the superconducting phase ��x ,z , t� as small

FIG. 4. �Color online� Geometry of the problem for the SJPW
excitation by the PM method. The dashed layers are a bit thicker
than others. k and k0 are the wave vectors of the incident and
specularly reflected waves, �sw is the wave number of the SJPW.
The case of backward resonance diffraction in the rth order
�r�0� is shown. Also, qr=q+rg�−�sw denotes the tangential com-
ponent of the wave vector of the resonance wave, and g=2
 /L is
the period of the reciprocal grating.
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variations around the stationary configuration �0�z� given by
Eq. �21�. Assuming

��x,z,t� = �0�z� + �w�x,z,t� ,

as a sum of the static and wave terms, we linearize Eq. �1� to
obtain

�1 − 	ab
2 �x�

�2

�x2	� �2�w

�t2 + �r
��w

�t
+ �J

2�w cos �0�z�	
− 	c

2�J
2�2�w

�z2 = 0. �25�

Substituting �w�x ,z , t��exp�iqnx− i�t� we derive an ordi-
nary differential equation for �w�x ,z�,

−
	c

2

1 + qn
2	ab

2 �x�
d2�w

dz2 + �1 − �2 + i��

−
2

cosh2��z − z0�/	c

��w = 0. �26�

Here we are interested in a solution decaying inside the lay-
ered superconductor: �w�x ,z�→0 at z→−�. Equation �26�
has the form of a one-dimensional Schrödinger equation for
a particle with energy

E��� = �2 − 1 + i�� �27�

in a reflectionless potential

U�z� = −
2

cosh2��z − z0�/	c

. �28�

Inside the layered superconductor, we represent the
gauge-invariant phase difference and the electromagnetic
field as expansions over the eigenfunctions. One can write a
solution of Eq. �25� in terms of the WKB approximation
valid for Qn=qn	ab�1. Taking into account Eqs. �2� and �3�
we obtain

�w�x,z� = �
n,s

KsAn�s
exp�iqnx�

�E − U�z�
1/4cos��s�z�
 , �29�

Hs�x,z� = Hinc�
n,s

Ks�n�s
exp�iqnx�

�E − U�z�
1/4sin��s�z�
 , �30�

Ex
s�x,z� = − Hinc�

n,s
asKs�n�s

exp�iqnx�
�E − U�z�
1/4sin��s�z�
 .

�31�

Here we introduce the dimensionless variable

as�z� =
i�

�


1 + Qs
2


E − U�z�
1

tan��s�z�

, �32�

and the function

�s�z� = �
1 + Qs
2

	c
�

zt

z

dz�
E − U�z�� −



4 � . �33�

After substituting Eqs. �23�, �24�, �30�, and �31� into Eq.
�11�, we get the following dispersion relation15

	ab�2

	c�


1 + Q2


�Q2 −
	ab

2 �2

	c
2�

��2
h0

2

hc
2 + E���	 = tan��s�0�
 .

�34�

with Q=�sw	ab, �sw����k is the SJPW wave number. Since
	ab /	c��1, this relation can be simplified disregarding the
vacuum contribution


1 + Q2

	c
�

zt

0

dz�
E��� − U�z�� = 
�n +
1

4
� , �35�

with n=0,1 ,2 , . . .. A set of dispersion curves for n
=0,1 , . . . ,9 is shown in Fig. 2�a� for the external magnetic
field h0 /hc=0.357.

Below we show that the SJPWs with the spectrum �Eq.
�35�
 can be excited by the PM method. The resonance ex-
citation of the SJPWs corresponds to the condition

Qn = �k sin � + ng�	ab = sign�n�Re�Q���
 , �36�

with Q=�sw	ab.
The coefficients An�s in Eq. �29� and �n�s in Eqs. �30� and

�31� can be found similar to Ref. 12. Substituting the expres-
sions in Eqs. �29�–�31� into Eqs. �3� and �25� and excluding
An�s, we derive the coefficients �n�s using perturbations
theory with respect to the small modulations, �fn��1. In lin-
ear approximation and in the absence of the degeneracy of
the corresponding matrix, i.e., at

qn
2 � qs

2 for n � s , �37�

we obtain

�n�s = �n,s + �̃n�s, �̃n�n = 0,

�̃n�s � −
Qs

2

Qn
2 − Qs

2 fn−s, n � s , �38�

where �n,s is the Kronecker delta.

III. RESULTS

In this section, we describe the results obtained on the
basis of the model discussed above. We derive expressions
for the reflectivity coefficients using both the ATR and PM
methods. Moreover, we show that choosing a certain set of
parameters one can completely suppress the reflection of the
incident wave.

A. Suppression of the specular reflectivity
using the ATR method

Using the conditions of continuity of the magnetic field
and of the tangential components of the electric field at the
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dielectric-vacuum and vacuum-layered superconductor inter-
faces �given in Sec. II A�, one obtains a set of four linear
algebraic equations for four unknown wave amplitudes,
hr ,h+ ,h−, and H0

s �here H0
s is the amplitude of the magnetic

field Hs in Eq. �7�
. Solving this set gives the reflection
coefficient

R � hr =
RF�kv/k − a� + �kv/k + a�C��,��
�kv/k − a� + �kv/k + a�RFC��,��

�39�

for the wave reflected from the bottom of the prism. Here

RF =
kd − ikv�

kd + ikv�
� exp�− i�� �40�

is the Fresnel reflection coefficient

C��,�� = exp�− 2kv�� �41�

is the parameter that provides the coupling between waves in
the dielectric prism and the layered superconductor. Also

a � a��,�� =
�


�
� 1 + Q2

1 − �2 − i��
�1/2

�42�

is the effective surface impedance of the superconductor.
Below we assume the coupling parameter C to be small.

However, even when C�1, the coupling of the waves in the
dielectric prism and superconductor plays a very important
role in the excitation of SJPWs. First, the dispersion relation
for the surface Josephson plasma waves is modified, involv-
ing a radiation leakage through the dielectric prism. The new
spectrum of the SJPWs is defined by the denominator in Eq.
�39�. Actually, the region where the coupling C�1 �when
the radiation leakage of the excited SJPW through the prism
does not dominate� corresponds to the strongest excitation of
the surface waves by the incident wave. Furthermore, the
coupling results in breaking the total internal reflection of the
electromagnetic waves from the dielectric-vacuum interface.
Due to this coupling, the reflection coefficient R in Eq. �39�
differs from the Fresnel one, RF, its modulus becoming less
than unity. Moreover, as we show below, the reflection of
waves with any frequency ���J can be completely sup-
pressed for the specific incident angle � and depth � of the
vacuum gap. This provides a way to control, detect, and filter
THz radiation. Below we assume the dissipation parameter �
to be small compared to �1−�2�,

� � 1 − �2. �43�

Then the complex parameter a�� ,�� in Eq. �42� can be pre-
sented as

a��,�� � a� + ia� =
�


�
� 1 + Q2

1 − �2�1/2�1 +
1

2

i��

1 − �2� .

�44�

Taking into account that kv /k�a� in the vicinity of the
SJPW spectrum, we can rewrite the reflection coefficient R
in the form

R = RF
X��,�� − iB��,���Copt��,�� − C��,��

X��,�� − iB��,���Copt��,�� + C��,��


, �45�

with

X��,�� =
kv

k
+ a��2C cos � − 1� , �46�

B��,�� = 2a� sin � , �47�

Copt��,�� =
a�

2a� sin �
, �48�

where kv�kv���, a��a��� ,��, and a��a��� ,��. Besides,
the relation between �, a��� ,��, and � takes the form

tan � =
2a�
� cos �

cos2 � − a�2�
. �49�

Equations �45� and �46� show that the modulus of the reflec-
tivity R��� has a sharp resonance minimum at

sin � = sin �res = � 1 + �� − 1��1 − �2�
����1 − �2� − 	ab

2 �2k2
�1/2

. �50�

Since sin �res�1, the resonance can be observed only for

1 − �2 �
1

��� − 1�
. �51�

The minimum value of R is

�R�min �
�Copt��,�res� − C��,�res��
Copt��,�res� + C��,�res�

. �52�

This value strongly depends on the frequency detuning
�1−��, dissipation parameter �, and the coupling between
the waves in the dielectric prism and the layered supercon-
ductor, i.e., on the thickness � of the vacuum gap. This offers
several important applications of the predicted anomaly in
the reflectivity in the THz range. For instance, if the coupling
parameter C�� ,�res� is equal to the optimal value Copt, i.e.,
the thickness, � takes the optimal value

�opt = � 1

2kv
ln

4 sin ��1 − �2�
��

�
�=�res

=
1

2k
� sin2 �res − 1

� ln�8
��� sin2 �res − 1� cos �res�1 − �2�
���� sin2 �res − 1� + cos2 �res
��

� ,

�53�

the reflection coefficient R at �=�res vanishes. This means
that a complete suppression of the reflectivity can be
achieved by an appropriate choice of the parameters due to
the resonant excitation of the surface Josephson plasma
waves.

Figure 5 shows the resonance suppression of the reflec-
tivity. Figure 6 demonstrates the sharp decrease in the reflec-
tivity in the �� ,�� plane due to the resonant excitation of the
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surface Josephson plasma waves. Obviously, the suppression
of the reflectivity can be observed by changing the frequency
at a given incident angle, as is shown in Fig. 7.

We also illustrated the effect of total suppression of the
specular reflection by the distribution of the total magnetic
field in the vacuum and the dielectric prism �Figs. 8 and 9�.
The interference pattern is seen for the nonresonant case �see
Fig. 8�, when the amplitudes of the incident and reflected
waves practically coincide. Under the resonance condition
�see Fig. 9�, when the reflected wave is totally suppressed,
the interference pattern in the far field disappears, while the
near-field “torch” structure of the SJPW is clearly seen near
the vacuum-layered superconductor interface.

B. Suppression of the specular reflectivity
using the PM method

The boundary conditions, i.e., the continuity of the elec-
tric and magnetic-field components parallel to the surface,
allow us to derive the transformation coefficients. Matching
fields of Eqs. �23� and �30� with Eqs. �24� and �31� at the
vacuum-superconductor interface, i.e., at z=0, we obtain

exp�iqx� + �
n

Rn exp�iqnx�

= �
n,s

Ks�n�s
exp�iqnx�

�2�h0/hc�2 + E���
1/4sin��s�0�
 ,

FIG. 5. The dependence of the reflectivity coefficient �R�2 on the
incident angle � that presents the numerical calculations using Eqs.
�44�–�48� �solid curve� and Eq. �39� �dotted curve� for parameters
�=2�10−3, 	abk=3�10−3, �1−�2�=0.1, �=16, and �=4. The
thickness of the vacuum gap is �=
 /k. In this case, the limiting
angle for the total internal reflection is �t=30°.

FIG. 6. The reflectivity coefficient in the plane �� ,�� shown in
gray levels. Other parameters are: �=2�10−3, �=16, and �=4,
	c /	ab=100. The thickness of the vacuum gap is �=
 /k. The dis-
persion relation for the wave in the dielectric-vacuum-layered su-
perconductor system is presented by the solid curve.

FIG. 7. The dependence of the reflectivity coefficient �R�2 on
�1−�2�, obtained for the incident angle 38.7° using Eqs. �44�–�48�
�solid curve� and Eq. �39� �dotted curve� for the same parameters as
in Fig. 5.

FIG. 8. �Color online� The magnetic-field distribution for the
nonresonant case, �=40°. Other parameters are: �=2�10−3, �
=0.89, �=16, �=4, and 	c /	ab=200. The thickness of the vacuum
gap is �=2
 /k.
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�V exp�iqx� − �
n

�n
VRn exp�iqnx�

= �
n,s

asKs�n�s
exp�iqnx�

�2�h0/hc�2 + E���
1/4sin��s�0�
 , �54�

where as�as�0�. Equation �54� yields an infinite set of linear
algebraic equations for the coefficients

Bs =
Ks sin��s�0�


�2�h0/hc�2 + E���
1/4 �55�

and their relations to the TCs Rn,

�
s

Dn�sBs = 2�V�n,0, �56�

Rn = �
s

Bs�n�s − �n,0, �57�

where

Dn�s = bn�n,s + dn�s, bn = �n
V + an, �58�

dn�s = ��n
V + as��̃n�s. �59�

To solve the infinite set of Eq. �56� for Bs we use resonant
perturbation theory, which allows to present results in an
explicit analytical form.21

When all spatial field harmonics are far away from the
eigenmodes of the unmodulated layered superconductor
�nonresonance conditions�, the diagonal elements bs of the

matrix D̂��Dn�s� are on the order of one or larger, �bs�
���s

V��1. In this case, the matrix D̂ is diagonal dominated,
that is, its off-diagonal elements are small compared to the
diagonal ones, �dn�s���fn−s�� �bs�. Then, the solution of Eqs.

�56� and �57� gives us a trivial result: the specular reflection
TC, R0, is close to the Fresnel coefficient

RF =
cos � − a0

cos � + a0
, �60�

and differs from it by terms proportional to f2. Other TCs are
small, Rn� fn, n�0. A much more interesting case occurs
under the resonance conditions, when Eq. �36� holds for one
�or simultaneously for two� spatial field �resonance� harmon-
ics

Qr = �k sin � + rg�	ab � sign�r�Re�Q���
 . �61�

Here r�0�r�0� corresponds to the forward �backward�
propagation of the excited SJPWs with respect to the inci-
dent wave.

For simplicity, we restrict ourselves to the single-
resonance case. Under the resonance conditions, the diagonal
matrix element Dr�r=br becomes anomalously small, and the

determinant of the matrix D̂ decreases significantly �see, e.g.,
Ref. 21�. Recall that the normalized z components of the
wave vectors in the vacuum, �s

V, can be either purely real or
purely imaginary. Therefore, the minimum of �br��1 holds
in the vicinity of the point in the �� ,�� plane, where
Im��r

V
=−Im�ar
, which is the dispersion relation for
SJPWs, Eq. �34�. According to Refs. 12 and 21, we come to
the following relation for the specular TC, R0,

R0 = RF

kzr
V /k + ar + Cr��,�, fr� − �r��,�, fr�

kzr
V /k + ar + Cr��,�, fr�

, �62�

where

�r��,�, fr� =
2 cos �

cos2 � − a0
2 � �a0 − ar��kzr

V /k + a0��̃0�r�̃r�0

�63�

and

Cr = − �
N

dr�NdN�r

bN
. �64�

Cr�Cr�� ,� , fr� is the parameter that describes the coupling
between waves in the vacuum and layered superconductor. In
the following numerical calculations for the specular coeffi-
cient R0 we consider Cr to be small. However, even when
�Cr��1, the coupling of the waves in the vacuum and super-
conductor plays a very important role in the excitation of
SJPWs and in the anomalies of the reflection properties
�similar to the case of the ATR method of the SJPWs exci-
tation�.

First, the dispersion relation for the surface Josephson
plasma waves is modified, involving a radiation leakage in
the vacuum. The new spectrum of the SJPWs is defined by
equating the denominator in Eq. �62� to zero. Thus, the qua-
dratic in the modulation term, Cr �see Eq. �64�
, is respon-
sible for the shift in the position of the resonance, Im�Cr
,
and its widening, Re�Cr
. The region, where the coupling

FIG. 9. �Color online� The magnetic-field distribution for the
resonant case, �=�res=33.8°. Other parameters are the same as in
Fig. 8.
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�Cr��1 �when the radiation leakage of the excited SJPWs
does not dominate�, corresponds to the strongest excitation
of the surface waves by the incident waves.

Second, due to the coupling, the specular reflection coef-
ficient, R0, differs from the Fresnel coefficient, RF, and its
modulus becomes less than one. Moreover, as we show be-
low, the reflection of waves with any given frequency �
��J can be totally suppressed for a certain value of the
external magnetic field h0 and for the appropriate incident
angle �. This provides a way to control and filter the THz
radiation. Figure 10 shows the total suppression of the reflec-
tivity when changing the external magnetic field. On the
other hand, Fig. 11 demonstrates the suppression of the re-
flectivity when changing the incident angle �. The numerical
calculations were proceeded for the SJPW marked by a solid
circle in Fig. 2�a�. These are the simplest examples of how
we can guide the THz radiation.

IV. CONCLUSIONS

Thus, we present a systematic study of the resonance fea-
tures for the excitation of the SJPWs across the junctions of
the layered superconductors. We show the possibility of the

SJPW resonance excitation by means of both the ATR and
PM methods. The resonance is produced by the excitation of
the SJPWs for specific combinations of the incident angle,
frequency, and external dc magnetic field. This phenomenon
is analogous to the well-known surface-plasmon polariton
resonance in the visible and near-infrared region. The ana-
lytical study developed here allows us to predict strong reso-
nance effects �total suppression of the specular reflection�.

For the PM method, the simplest �in-plane� configuration
for a TM-polarized incident wave was examined under
single-resonance conditions �i.e., excitation of one running
SJPW�. The approach used here allows a similar study of the
simultaneous excitation of two SJPWs �double resonance�,
as well as the examination of the so-called “conical diffrac-
tion mount” �out-of-plane diffraction�. The phenomena dis-
cussed here together with nonlinear and quantum effects22 in
layered superconductors make these materials very promis-
ing for different THz applications.
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